Linear Quadratic Gaussian and Feedforward Controllers for the DSS-13 Antenna
نویسندگان
چکیده
The controller development and the tracking performance evaluation for the DSS-13 antenna are presented. A trajectory preprocessor, linear quadratic Gaussian (LQG) controller, feedforward controller, and their combination were designed, built, analyzed, and tested. The antenna exhibits nonlinear behavior when the input to the antenna and/or the derivative of this input exceeds the imposed limits; for slewing and acquisition commands, these limits are typically violated. A trajectory preprocessor was designed to ensure that the antenna behaves linearly, just to prevent nonlinear limit cycling. The estimator model for the LQG controller was identified from the data obtained from the field test. Based on an LQG balanced representation, a reduced-order LQG controller was obtained. The feedforward controller and the combination of the LQG and feedforward controller were also investigated. The performance of the controllers was evaluated with the tracking errors (due to following a trajectory) and the disturbance errors (due to the disturbances acting on the antenna). The LQG controller has good disturbance rejection properties and satisfactory tracking errors. The feedforward controller has small tracking errors but poor disturbance rejection properties. The combined LQG and feedforward controller exhibits small tracking errors as well as good disturbance rejection properties. However, the cost for this performance is the complexity of the controller.
منابع مشابه
An H∞ Controller With Wind Disturbance Rejection Properties for the DSS-13 Antenna
The feed-forward and linear quadratic Gaussian (LQG) controllers significantly reduced the servo error at higher rate tracking. However, the servo error due to wind disturbances acting on the antenna structure is still significant. This error cannot be reduced by the feed-forward controller and is only moderately reduced by the LQG controller. The H∞ controller design approach gives the possibi...
متن کاملOptimal Control of Fuel Processing System Using Generalized Linear Quadratic Gaussian and Loop Transfer Function Recovery Method
This paper originally proposes an optimal control system which consists of both feedforward and statefeedback controllers using a generalized linear quadratic Gaussian and loop transfer recovery (GLQG/LTR) method. The control objective is focused on the regulatory performances of output vector in response to a desired stack current command in face of load variation. The proposed method provides...
متن کاملGenetic Feedforward-Feedback Controller for Functional Electrical Stimulation Control of Elbow Joint Angle
Background: Functional electrical stimulation (FES) is the most commonly used system for restoring functions after spinal cord injury (SCI). Objective: In this study we investigated feedback PID and feedforward-feedback P-PID controllers for regulating the elbow joint angle. Methods: The controllers were tuned based on a nonlinear muculoskeletal model containing two links, one joint with one de...
متن کاملProper Orthogonal Decomposition for Reduced Basis Feedback Controllers for Parabolic Equations
In this paper, we present a discussion of the proper orthogonal decomposition (POD) as applied to simulation and feedback control of the one dimensional heat equation. We provide two examples of input collections to which the POD process is applied. First, we apply POD directly to the nite element basis of linear B-splines. Next we additionally include time snapshots. We show that although the ...
متن کاملINVESTIGATION OF THE OPTIMAL SEMI-ACTIVE CONTROL STRATEGIES OF ADJACENT BUILDINGS CONNECTED WITH MAGNETORHEOLOGICAL DAMPERS
This study investigates the efficacy of optimal semi-active dampers for achieving the best results in seismic response mitigation of adjacent buildings connected to each other by magnetorheological (MR) dampers under earthquakes. One of the challenges in the application of this study is to develop an effective optimal control strategy that can fully utilize the capabilities of the MR dampers. H...
متن کامل